Control of the bipolarization emission of the Yb:YAG laser by the orientation of the pump polarization

Herman AKAGLA University of Rennes 1, Director: Prof. Marc Brunel

2022-12-(05-06)

Outline

Introduction

Introduction

Laser

The acronym LASER stands for "Light Amplification by Stimulated Emission of Radiation"

Laser properties

- Coherent
- Focused
- One color(Wavelength)

Early history

- First built in 1960 by Theodore Maiman
- Charles Hard Townes, Arthur Leonard Schalow, etc

Laser Innovations

- Laser pointers
- Medicine
- Telecommunication
- Industry
- Lidar, Radar etc...

Optical frequency comb (OFC)

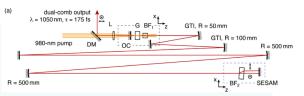
What is an OFC?

- Optical frequency combs are specialized lasers that act like a ruler for light.
- High-precision spectroscopy and optical clock.

What an OFC can do?

They measure exact frequencies of light; from the invisible infrared and ultraviolet to visible red, yellow, green and blue light quickly and accurately.

Physicists behind the frequency combs


The discovery of frequency combs and their applications by John L. Hall and Theodor W. Hänsch lead to the 2005 Nobel Prize in Physics. ^a

^ahttps://link.aps.org/doi/10.1103

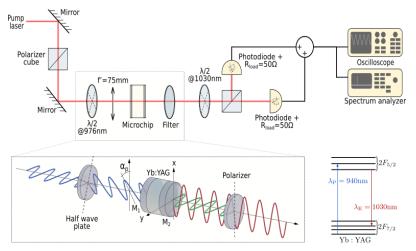
Introduction

• Ytterbium lasers are widely used for femtosecond pulse generation.

• In the case of quasi-isotropic active media such as Yb:YAG or Yb:CaF₂, two eigenstates with orthogonal polarizations can oscillate simultaneously^a.

^aU. Keller, Opt. Express, 28(20) :30275–30288, 2020

Context

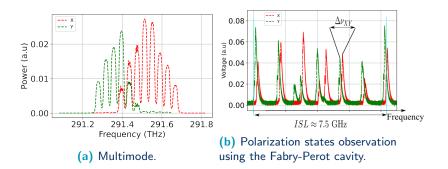

 $\begin{array}{c} & \text{Pulse-to-pulse} \\ & \text{polarizations} \\ & \text{sw} = \frac{f_{reg}}{8} \\ & \text{mode-lock Nd:YAG laser in our group.} \end{array}$

^aJ. Thévenin, Opt. Lett., 2012.

Purpose of the work

- Yb:YAG crystal
- Coupling between the two polarization states?
- Influence of the pump polarization?

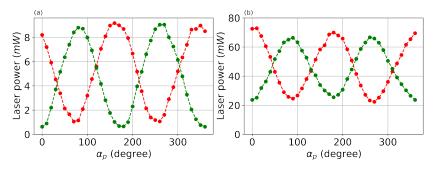
Microchip laser


Microchip characteristics

- Thickness of the active medium= 2 mm, $P_{threshold} = 80$ mW.
- For $P_{pump} = 1.5$ W; $P_{laser} = 120$ mW.

Herman AKAGLA [Institut Foton]

RJCAF 2022


Optical spectral analysis

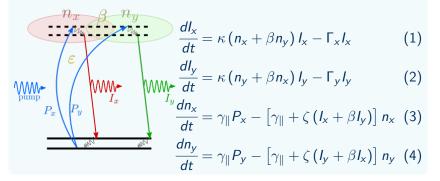
Observations

- □ On Y: 10 stable modes (6 intense and 4 less intense)
- On X: 8 stable and intense modes
- \Box Measurement of the spectral separation $\Delta \nu_{XY}$
- \Box Stress birefringence in the crystal: $\Delta n = 1.41 \times 10^{-6}$

Experimental results

Figure 3: Powers P_x (in red) and P_y (in green).

Observations


• Oscillation of the laser in two polarization states: linear and orthogonal.

 \bullet Control of the gain anisotropy \Rightarrow Promotion of one polarization state or another.

Herman AKAGLA [Institut Foton]

Model

Evolution equations of $I_{x,y}$ et $n_{x,y}$

Pumping anisotropy^a

^aT. Chartier, Appl. Phys. B, 70(1) :23-31, 2000.)

$$P_{x,y} = P\left(1 \pm \varepsilon \cos\left(2\alpha_p\right)\right)$$

Herman AKAGLA [Institut Foton]

RJCAF 2022

(5)

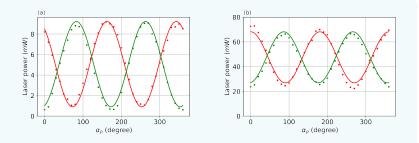
Normalization and expression of the excitation degree

$$\hat{J}_x = I_x / (\gamma_{\parallel} / \zeta)$$
 and $\eta = P / P_{th}$ (6)

Stationary solutions(important parameters ε, β and η)

$$\hat{l}_{x,y} = \eta \left(1 \pm \varepsilon \, \frac{1+\beta}{1-\beta} \cos 2\alpha_p \right) - \frac{1}{1+\beta} \tag{7}$$

We can now measure the good parameters for the model.


Cross saturation coefficient^a

^aM. Brunel, A. Amon, and M. Vallet. Opt. Lett., 30(18) :2418–2420, 2005.

$$eta = rac{\Omega_R - \Omega_L}{\Omega_R + \Omega_L} pprox 0.64 \pm 0.02$$
 and $arepsilon = 0.084$

Herman AKAGLA [Institut Foton]

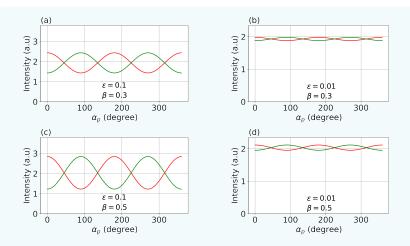
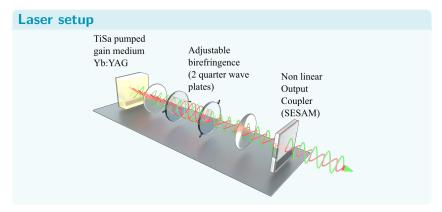

Comparison between the model and the experimental results

Figure 4: Powers P_x (in red) and P_y (in green). The points (resp. solid curves) represent the experimental (resp. theoretical) results. (a) $\eta = 2.7$ and (b) $\eta = 18.3$.

• Nice agreement between the theory and the experiment.

Exploration of the model



For a given value of β , the contrast between the two polarization intensities decreases when the pump anisotropy coefficient decreases.

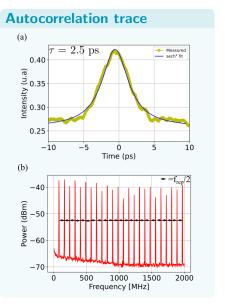
Herman AKAGLA [Institut Foton]

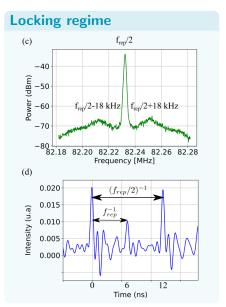
RJCAF 2022

Actual experiments: mode-lock Yb:YAG laser

Mode-locked laser

- $w_{SESAM} = 20 \mu m$
- $w_{Yb:YAG} = 17 \mu m$
- $P_{threshold} = 2.82 \text{ W}$
- $\bullet < P >= 90 \text{ mW}$


Herman AKAGLA [Institut Foton]


Combs characteristics

- $T_{rep} = 6$ ns
- $\bullet f_{rep} = 164.44 \text{ MHz}$
- FWHM $(f_{rep}) = 17 \text{ Hz}$
- FWHM $(f_{rep}/2) = 8 \text{ Hz}$

RJCAF 2022

Results

Conclusions

- The orientation of the pump polarization is an effective tool for controlling the relative powers in a dual-polarized Ytterbium laser.
- □ First measurement of the cross saturation coefficient $\beta = 0.64 \pm 0.02$ in a Ytterbium laser.
- $\hfill\square$ Calculation of the pump anisotropy parameter $\varepsilon=0.084$ in a Ytterbium laser.
- □ Good agreement between the theory and the experiment.
- □ Extension of the principle to a dual frequency comb.

Perspectives: projects planned for the thesis work

- □ Generation of a polarization sequences.
- □ Implementation of the most stable mode locking regime.
- □ New crystal of Yb:CaF₂(CIMAP at CAEN), diode pumping.

Acknowledgements

Professors

- Marc BRUNEL
- Marc VALLET
- François BONDU
- Mehdi ALOUINI
- Marco ROMANELLI

Admnistration

Patricia BERTHELOT

Funding

- Rennes 1 university
- COCOA Contract
- Doctoral College

Engineers

- Goulc'hen LOAS
- Anthony CARRE
- Ludovic FREIN
- Steve BOUHIER
- Cyril HAMEL

Students

- Nicolas CHAPRON
- Brian SINQUIN
- Jérôme TAILLIEU
- Victor LAURIAU

Future projects in Africa

Activities towards students

- Inspire young African students to enter scientific fields.
- Caravan of exhibition and scientific demonstrations.
- Scholar orientation.
- Training students on Optics and Photonics.
- Scientific activity in school for disabled students.
- Visit to companies.
- Organize televised debates between young scientists and heads of companies and institutions.

Scientific demonstrations in Togo

Scholar orientation

