Phase Transition in the Peierls model for polyacetylene

Adéchola KOUANDE
Joint work with David Gontier and Eric Séré

CEREMADE, Université Paris-Dauphine

RJCAF 5th Edition

December 06, 2022

Hideki Shirakawa.

Hideki Shirakawa.

Alan G. MacDiarmid.

Hideki Shirakawa.

Alan G. MacDiarmid.

Alan J. Heeger.

Hideki Shirakawa.

Alan G. MacDiarmid.

Alan J. Heeger.

For the discovery and development of conductive polymers

Outline

(1) Description of the model, scope and aim
(2) The Peierls model at zero temperature
(3) The Peierls model with temperature
(4) Statement of our results

Outline

(1) Description of the model, scope and aim

(2) The Peierls model at zero temperature

(3) The Peierls model with temperature
(4) Statement of our results

Description of the model, scope and aim

- What is Polyacetylene?

Figure: Dimerized Polyacetylene.

Description of the model, scope and aim

- What is Polyacetylene?

Figure: Dimerized Polyacetylene.

- Practical and technological applications: Rechargeable batteries, Biomedical, OLED bulbs...

Figure: Light-emitting plastic film

Description of the model, scope and aim

- What is Polyacetylene ?

Figure: Dimerized Polyacetylene.

- Practical and technological applications: Rechargeable batteries, Biomedical, OLED bulbs...

Figure: Light-emitting plastic film

- Aim: understand how conductivity changes with temperature.

Outline

(1) Description of the model, scope and aim
(2) The Peierls model at zero temperature

The Peierls model

- Consider a linear chain of L carbon atoms linked by springs of strength $\mu>0$ with a length at rest $\ell=1$.

The Peierls energy 1930. At the half filled band, the Peierls energy of the system is given by

The Peierls model

- Consider a linear chain of L carbon atoms linked by springs of strength $\mu>0$ with a length at rest $\ell=1$.
- Denote by t_{i} the distance between the i-th and $(i+1)$-th atoms, and set $\mathbf{t}=\left\{t_{1}, \cdots, t_{L}\right\}$ with periodicity L, which means $i \in \mathbb{Z} / L \mathbb{Z}$.
- To any $\mathbf{t}=\left\{t_{1}, \cdots, t_{L}\right\}$ we associate a matrix T defined by

$$
T=T(\mathbf{t}):=\left(\begin{array}{cccccc}
0 & t_{1} & 0 & 0 & \cdots & t_{L} \\
t_{1} & 0 & t_{2} & \cdots & 0 & 0 \\
0 & t_{2} & 0 & t_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & t_{L-2} & 0 & t_{L-1} \\
t_{L} & 0 & \cdots & 0 & t_{L-1} & 0
\end{array}\right)
$$

The Peierls model

- Consider a linear chain of L carbon atoms linked by springs of strength $\mu>0$ with a length at rest $\ell=1$.
- Denote by t_{i} the distance between the i-th and $(i+1)$-th atoms, and set $\mathbf{t}=\left\{t_{1}, \cdots, t_{L}\right\}$ with periodicity L, which means $i \in \mathbb{Z} / L \mathbb{Z}$.
- To any $\mathbf{t}=\left\{t_{1}, \cdots, t_{L}\right\}$ we associate a matrix T defined by

$$
T=T(\mathbf{t}):=\left(\begin{array}{cccccc}
0 & t_{1} & 0 & 0 & \cdots & t_{L} \\
t_{1} & 0 & t_{2} & \cdots & 0 & 0 \\
0 & t_{2} & 0 & t_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & t_{L-2} & 0 & t_{L-1} \\
t_{L} & 0 & \cdots & 0 & t_{L-1} & 0
\end{array}\right)
$$

- The Peierls energy 1930. At the half filled band, the Peierls energy of the system is given by

$$
\begin{equation*}
\mathcal{E}^{(L)}(\mathbf{t}, \gamma):=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}+2 \operatorname{Tr}(T \gamma), \quad \gamma \in \mathcal{S}_{L}(\mathbb{C}) ; 0 \leq \gamma \leq 1 \tag{2}
\end{equation*}
$$

Ground state of the Peierls energy

$$
\mathcal{E}^{(L)}(\mathbf{t}, \gamma):=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}+2 \operatorname{Tr}(T \gamma)
$$

$$
\inf \left\{\mathcal{E}^{(L)}, \mathbf{t} \in\left(\mathbb{R}_{+}\right)^{L}, \quad \gamma \in \mathcal{S}_{L}(\mathbb{C}), 0 \leq \gamma \leq 1\right\} .
$$

Lemma

For any $T \in \mathcal{S}_{L}(\mathbb{C})$,

$$
\inf _{\substack{\gamma \in s,(0) \\ 0 \leq \gamma \leq 1}}\{2 \operatorname{Tr}(T \gamma)\}=-\operatorname{Tr}\left(\sqrt{T^{2}}\right)=-\operatorname{Tr}(|T|) .
$$

New minimization problem

with

$$
\mathcal{E}^{(L)}(\mathbf{t}):=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}-\operatorname{Tr}(|T|)
$$

Ground state of the Peierls energy

$$
\mathcal{E}^{(L)}(\mathbf{t}, \gamma):=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}+2 \operatorname{Tr}(T \gamma)
$$

$$
\inf \left\{\mathcal{E}^{(L)}, \mathbf{t} \in\left(\mathbb{R}_{+}\right)^{L}, \quad \gamma \in \mathcal{S}_{\iota}(\mathbb{C}), 0 \leq \gamma \leq 1\right\} .
$$

Lemma

For any $T \in \mathcal{S}_{L}(\mathbb{C})$,

$$
\inf _{\substack{\gamma \in \mathcal{S}_{L}(\mathbb{C}) \\ 0 \leq \gamma \leq 1}}\{2 T r(T \gamma)\}=-\operatorname{Tr}\left(\sqrt{T^{2}}\right)=-\operatorname{Tr}(|T|)
$$

New minimization problem

$$
E^{(L)}:=\inf \left\{\mathcal{E}^{(L)}, \quad \mathbf{t} \in\left(\mathbb{R}_{+}\right)^{L}\right\}
$$

with

$$
\begin{equation*}
\mathcal{E}^{(L)}(\mathbf{t}):=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}-\operatorname{Tr}(|T|) . \tag{3}
\end{equation*}
$$

Remarks and even case ($L=2 N$)

$$
\mathcal{E}^{(2 N)}(\mathbf{t}):=\frac{\mu}{2} \sum_{i=1}^{2 N}\left(t_{i}-1\right)^{2}-\operatorname{Tr}(|T|)
$$

- $\mathcal{U}^{\dagger} T \mathcal{U}=-T \quad$ with $\quad \mathcal{U}_{i j}=(-1)^{i} \delta_{i j}$, .
- If $L=2 N+1$, then $0 \in \sigma(T)$.
- This model is translation invariant, in the sense

$$
\mathcal{E}^{(L)}(\mathbf{t})=\mathcal{E}^{(L)}\left(\tau_{k} \mathbf{t}\right), \tau_{k} \mathbf{t}:=\left\{t_{k+1}, \cdots, t_{k+L}\right\}, k=1, \ldots, L .
$$

Remarks and even case ($L=2 N$)

$$
\mathcal{E}^{(2 N)}(\mathbf{t}):=\frac{\mu}{2} \sum_{i=1}^{2 N}\left(t_{i}-1\right)^{2}-\operatorname{Tr}(|T|)
$$

- $\mathcal{U}^{\dagger} T \mathcal{U}=-T \quad$ with $\quad \mathcal{U}_{i j}=(-1)^{i} \delta_{i j},$.
- If $L=2 N+1$, then $0 \in \sigma(T)$.
- This model is translation invariant, in the sense

$$
\mathcal{E}^{(L)}(\mathbf{t})=\mathcal{E}^{(L)}\left(\tau_{k} \mathbf{t}\right), \tau_{k} \mathbf{t}:=\left\{t_{k+1}, \cdots, t_{k+L}\right\}, k=1, \ldots, L .
$$

Theorem (Even case: Kennedy and Lieb 1987)

For $L=2 N$, and $\mu>0$, there are exactly two minimizing configurations for $E^{(2 N)}$, of the form

$$
\begin{equation*}
t_{i}=W+(-1)^{i} \delta \text { or } t_{i}=W-(-1)^{i} \delta, \quad \text { with } \delta \geq 0 \text { (2-periodic). } \tag{4}
\end{equation*}
$$

- The electrons are blocked, hence low conductivity of these configurations.

Odd case $(L=2 N+1)$

Theorem (Odd case: Garcia Arroyo and Séré 2011)

For odd $L(L=2 N+1)$ the minimizers of the Peierls energy look like "kinks". Let $\mathbf{t}(2 N+1)=\left(t_{i}\right)_{i \in \mathbb{Z} /(2 N+1) \mathbb{Z}}$ be a global minimizer of $E^{(2 N+1)}$. Up to translation and subsequence, $\lim _{N \rightarrow+\infty} t_{i}(2 N+1)=: t_{i}^{\infty}$ exists and satisfies

$$
\left|t_{i}^{\infty}-\left(W \pm(-1)^{i} \delta\right)\right| \xrightarrow[i \rightarrow-\infty]{ } 0, \text { and }\left|t_{i}^{\infty}-\left(W \mp(-1)^{i} \delta\right)\right| \xrightarrow[i \rightarrow \infty]{ } 0 .
$$

Figure: $L=101$, we observe a localized kink.

- Kinks can move, low conductivity of these configurations too.

Outline

(1) Description of the model, scope and aim
(2) The Peierls model at zero temperature
(3) The Peierls model with temperature
(4) Statement of our results

The Energy with temperature

In presence of positive temperature θ, the energy is given by

$$
\mathcal{F}_{\theta}^{(L)}(\mathbf{t}, \gamma):=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}+2(\operatorname{Tr}(T \gamma)+\theta \operatorname{Tr}[S(\gamma)])
$$

$\gamma \in \mathcal{S}_{L}(\mathbb{C}), 0 \leq \gamma \leq 1$ and $S(\gamma)=(1-\gamma) \log (1-\gamma)+\gamma \log (\gamma)$.
Study the minimizers of the energy

$$
\inf \left\{\mathcal{F}_{\theta}^{(L)}, \mathbf{t} \in\left(\mathbb{R}_{+}\right)^{L}, \quad \gamma \in \mathcal{S}_{L}(\mathbb{C}), 0 \leq \gamma \leq 1\right\}
$$

The Energy with temperature

In presence of positive temperature θ, the energy is given by

$$
\mathcal{F}_{\theta}^{(L)}(\mathbf{t}, \gamma):=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}+2(\operatorname{Tr}(T \gamma)+\theta \operatorname{Tr}[S(\gamma)])
$$

$\gamma \in \mathcal{S}_{L}(\mathbb{C}), 0 \leq \gamma \leq 1$ and $S(\gamma)=(1-\gamma) \log (1-\gamma)+\gamma \log (\gamma)$.
Study the minimizers of the energy

$$
\inf \left\{\mathcal{F}_{\theta}^{(L)}, \mathbf{t} \in\left(\mathbb{R}_{+}\right)^{L}, \quad \gamma \in \mathcal{S}_{L}(\mathbb{C}), 0 \leq \gamma \leq 1\right\}
$$

Lemma

For any $T \in \mathcal{S}_{L}(\mathbb{C})$,

$$
\inf _{\substack{\gamma \in \mathcal{S}_{l}(\mathbb{C}) \\ 0 \leq \gamma \leq 1}}\{2(\operatorname{Tr}(T \gamma)+\theta S(\gamma))\}=-\operatorname{Tr}\left(h_{\theta}\left(T^{2}\right)\right),
$$

attained at $\gamma_{*}=\left(1+e^{T / \theta}\right)^{-1}$, with $h_{\theta}(x):=2 \theta \log \left(2 \cosh \left(\frac{\sqrt{x}}{2 \theta}\right)\right)$ concave on \mathbb{R}_{+}.

Energy with temperature

New minimization problem

$$
\min \left\{\mathcal{F}_{\theta}^{(L)}(\mathbf{t}), \mathbf{t} \in \mathbb{R}_{+}^{L}\right\}
$$

with

$$
\begin{equation*}
\mathcal{F}_{\theta}^{(L)}(\mathbf{t}):=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}-\operatorname{Tr}\left(h_{\theta}\left(T^{2}\right)\right) \tag{5}
\end{equation*}
$$

Goal: study the phase diagram in the (μ, θ) plane.

Energy with temperature

New minimization problem

$$
\min \left\{\mathcal{F}_{\theta}^{(L)}(\mathbf{t}), \mathbf{t} \in \mathbb{R}_{+}^{L}\right\}
$$

with

$$
\begin{equation*}
\mathcal{F}_{\theta}^{(L)}(\mathbf{t}):=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}-\operatorname{Tr}\left(h_{\theta}\left(T^{2}\right)\right) \tag{5}
\end{equation*}
$$

Goal: study the phase diagram in the (μ, θ) plane.
Define the energy $\mathcal{G}_{\theta}^{(L)}$ by

$$
\begin{gather*}
\mathcal{G}_{\theta}^{(L)}(\mathbf{t})=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}-\operatorname{Tr}\left(h_{\theta}\left(\left\langle T^{2}\right\rangle\right)\right), \tag{6}\\
\left\langle T^{2}\right\rangle=\frac{1}{L} \sum_{k=1}^{L} \Theta_{k} T^{2} \Theta_{k}^{-1}, \text { with } \Theta_{k}=\Theta_{1}^{k} \text { and } \Theta_{1}:=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right) .
\end{gather*}
$$

General lower bound

Theorem (GLB)

- H be a separable Hilbert space (real or complex),
- I an interval of \mathbb{R} containing 0 ,
- $\varphi: I \rightarrow \mathbb{R}$ a convex function,
- $\mathcal{S}_{\mathcal{H}}$, the space of linear bounded self-adjoint trace class operators $\mathrm{A}: \mathcal{H} \rightarrow \mathcal{H}$ i.e. compact and $\sum_{\lambda \in \sigma(A)}|\lambda|<\infty$,
- $\mathcal{M}_{I}:=\left\{A \in \mathcal{S}_{\mathcal{H}}, \quad \sigma(A) \subset I\right\}$.

Then the function $f: A \in \mathcal{M}_{l} \mapsto \operatorname{Tr}(\varphi(A))$ is well defined and convex.

with equality for 2-periodic configurations $\mathbf{t}_{2}=\left\{t_{i}\right\}_{i}$ with $t_{i}=W \pm(-1)^{i} \delta$ $i=1, \ldots, L$, where $\delta \geq 0$.

General lower bound

Theorem (GLB)

- H be a separable Hilbert space (real or complex),
- I an interval of \mathbb{R} containing 0 ,
- $\varphi: I \rightarrow \mathbb{R}$ a convex function,
- $\mathcal{S}_{\mathcal{H}}$, the space of linear bounded self-adjoint trace class operators $\mathrm{A}: \mathcal{H} \rightarrow \mathcal{H}$ i.e. compact and $\sum_{\lambda \in \sigma(A)}|\lambda|<\infty$,
- $\mathcal{M}_{I}:=\left\{A \in \mathcal{S}_{\mathcal{H}}, \quad \sigma(A) \subset I\right\}$.

Then the function $f: A \in \mathcal{M}_{I} \mapsto \operatorname{Tr}(\varphi(A))$ is well defined and convex.
Applying this theorem with $\mathcal{H}=\mathbb{R}^{L}, \quad I=\mathbb{R}_{+}, \quad \varphi(x)=-h_{\theta}(x), \quad \mathcal{S}_{\mathcal{H}}=\mathcal{S}_{L}(\mathbb{R}), \quad A=T^{2}, \mathcal{M}_{I}=\mathcal{S}_{L}^{+}(\mathbb{R})$, we get

$$
\operatorname{Tr}\left(h_{\theta}\left(T^{2}\right)\right) \leq \operatorname{Tr}\left(h_{\theta}\left(\left\langle T^{2}\right\rangle\right)\right) \Longrightarrow \mathcal{F}_{\theta}^{(L)}(\mathbf{t}) \geq \mathcal{G}_{\theta}^{(L)}(\mathbf{t})
$$

with equality for 2-periodic configurations $\mathbf{t}_{2}=\left\{t_{i}\right\}_{i}$ with $t_{i}=W \pm(-1)^{i} \delta$ $i=1, \ldots, L$, where $\delta \geq 0$.

Outline

(1) Description of the model, scope and aim
(2) The Peierls model at zero temperature

3 The Peierls model with temperature
(4) Statement of our results

First Result

$$
\mathcal{F}_{\theta}^{(L)}(\mathbf{t})=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}-\operatorname{Tr}\left(h_{\theta}\left(T^{2}\right)\right)
$$

Theorem (Gontier, K, Séré 2022)

For any $L=2 N$, with N an integer and $N \geq 2$, there exists a critical temperature $\theta_{c}^{(L)}:=\theta_{c}^{(L)}(\mu) \geq 0$ such that:

- for $\theta \geq \theta_{c}^{(L)}$, the minimizer of $\mathcal{F}_{\theta}^{(L)}$ is unique and 1-periodic;
- for $\theta \in\left(0, \theta_{c}^{(L)}\right)$ (this set is empty if $\theta_{c}^{(L)}=0$), there are exactly two minimizers, which are 2-periodic, of the form $t_{i}=W \pm(-1)^{i} \delta$, with $\delta \geq 0$.
In addition,
(1) If $L \equiv 0 \bmod 4$, this critical temperature is positive $\left(\theta_{c}^{(L)}(\mu)>0\right.$ for all $\left.\mu>0\right)$.
(1) If $L \equiv 2 \bmod 4$, there is $\mu_{c}:=\mu_{c}(L)>0$ such that for $\mu \leq \mu_{c}, \theta_{c}^{(L)}$ is positive $\left(\theta_{c}^{(L)}>0\right)$, whereas for $\mu>\mu_{c}, \theta_{c}^{(L)}=0$. Moreover as a function of L we have $\mu_{c}(L) \sim \frac{2}{\pi} \ln (L)$ at $+\infty$.

First Result

$$
\mathcal{F}_{\theta}^{(L)}(\mathbf{t})=\frac{\mu}{2} \sum_{i=1}^{L}\left(t_{i}-1\right)^{2}-\operatorname{Tr}\left(h_{\theta}\left(T^{2}\right)\right)
$$

Theorem (Gontier, K, Séré 2022)

For any $L=2 N$, with N an integer and $N \geq 2$, there exists a critical temperature $\theta_{c}^{(L)}:=\theta_{c}^{(L)}(\mu) \geq 0$ such that:

- for $\theta \geq \theta_{c}^{(L)}$, the minimizer of $\mathcal{F}_{\theta}^{(L)}$ is unique and 1-periodic;
- for $\theta \in\left(0, \theta_{c}^{(L)}\right)$ (this set is empty if $\theta_{c}^{(L)}=0$), there are exactly two minimizers, which are 2-periodic, of the form $t_{i}=W \pm(-1)^{i} \delta$, with $\delta \geq 0$.
In addition,
(1) If $L \equiv 0 \bmod 4$, this critical temperature is positive $\left(\theta_{c}^{(L)}(\mu)>0\right.$ for all $\left.\mu>0\right)$.
(1) If $L \equiv 2 \bmod 4$, there is $\mu_{c}:=\mu_{c}(L)>0$ such that for $\mu \leq \mu_{c}, \theta_{c}^{(L)}$ is positive $\left(\theta_{c}^{(L)}>0\right)$, whereas for $\mu>\mu_{c}, \theta_{c}^{(L)}=0$. Moreover as a function of L we have $\mu_{c}(L) \sim \frac{2}{\pi} \ln (L)$ at $+\infty$.

By the above general lower

$$
\inf _{\mathbf{t}} \mathcal{G}_{\theta}^{(2 N)}(\mathbf{t}) \geq \mathcal{F}_{\theta}^{(2 N)}\left(\mathbf{t}_{2}\right)=\mathcal{G}_{\theta}^{(2 N)}\left(\mathbf{t}_{2}\right) \geq \inf _{\mathbf{t}} \mathcal{G}_{\theta}^{(2 N)}(\mathbf{t})
$$

Then as in the null temperature case, the minimizers are always 2-periodic.

The minimization problem is reduced to a minimization over the two variables W and δ. Actually, we have

$$
F_{\theta}^{(2 N)}=(2 N) \min \left\{g_{\theta}^{(2 N)}(W, \delta), \quad W \geq 0, \delta \geq 0\right\}
$$

with the energy per unit atom
$g_{\theta}^{(2 N)}(W, \delta)=\frac{\mu}{2}\left[(W-1)^{2}+\delta^{2}\right]-\frac{1}{2 N} \sum_{k=1}^{2 N} h_{\theta}\left(4 W^{2} \cos ^{2}\left(\frac{2 k \pi}{2 N}\right)+4 \delta^{2} \sin ^{2}\left(\frac{2 k \pi}{2 N}\right)\right)$

thermodynamic limit free energy (per unit atom) as $L \rightarrow+\infty$, and we get

The minimization problem is reduced to a minimization over the two variables W and δ. Actually, we have

$$
F_{\theta}^{(2 N)}=(2 N) \min \left\{g_{\theta}^{(2 N)}(W, \delta), \quad W \geq 0, \delta \geq 0\right\}
$$

with the energy per unit atom
$g_{\theta}^{(2 N)}(W, \delta)=\frac{\mu}{2}\left[(W-1)^{2}+\delta^{2}\right]-\frac{1}{2 N} \sum_{k=1}^{2 N} h_{\theta}\left(4 W^{2} \cos ^{2}\left(\frac{2 k \pi}{2 N}\right)+4 \delta^{2} \sin ^{2}\left(\frac{2 k \pi}{2 N}\right)\right)$
We recognize a Riemann sum in the last expression. We can take the thermodynamic limit free energy (per unit atom) as $L \rightarrow+\infty$, and we get

$$
\begin{equation*}
f_{\theta}:=\liminf _{N \rightarrow+\infty} \frac{1}{2 N} F_{\theta}^{(2 N)} \tag{7}
\end{equation*}
$$

The minimization problem is reduced to a minimization over the two variables W and δ. Actually, we have

$$
F_{\theta}^{(2 N)}=(2 N) \min \left\{g_{\theta}^{(2 N)}(W, \delta), \quad W \geq 0, \delta \geq 0\right\}
$$

with the energy per unit atom
$g_{\theta}^{(2 N)}(W, \delta)=\frac{\mu}{2}\left[(W-1)^{2}+\delta^{2}\right]-\frac{1}{2 N} \sum_{k=1}^{2 N} h_{\theta}\left(4 W^{2} \cos ^{2}\left(\frac{2 k \pi}{2 N}\right)+4 \delta^{2} \sin ^{2}\left(\frac{2 k \pi}{2 N}\right)\right.$
We recognize a Riemann sum in the last expression. We can take the thermodynamic limit free energy (per unit atom) as $L \rightarrow+\infty$, and we get

$$
\begin{equation*}
f_{\theta}:=\liminf _{N \rightarrow+\infty} \frac{1}{2 N} F_{\theta}^{(2 N)} \tag{7}
\end{equation*}
$$

Lemma

We have $f_{\theta}=\min \left\{g_{\theta}(W, \delta), \quad W \geq 0, \delta \geq 0\right\}$ with

$$
g_{\theta}(W, \delta):=\frac{\mu}{2}\left[(W-1)^{2}+\delta^{2}\right]-\frac{1}{2 \pi} \int_{0}^{2 \pi} h_{\theta}\left(4 W^{2} \cos ^{2}(s)+4 \delta^{2} \sin ^{2}(s)\right) \mathrm{d} s
$$

Second result

Theorem (Gontier, K, Séré 2022)

There is a critical (thermodynamic) temperature $\theta_{c}=\theta_{c}(\mu)>0$, which is always positive, and so that for all $\theta \geq \theta_{c}$, the minimizer of g_{θ} satisfies $\delta=0$, whereas for all $\theta<\theta_{c}$, it satisfies $\delta>0$.
In the large μ limit, we have

$$
\theta_{c}(\mu) \sim C \exp \left(-\frac{\pi}{4} \mu+o(1)\right), \quad \text { with } \quad C \approx 1.6686 .
$$

Then in an infinite chain, there is a transition between the dimerized states $(\delta>0)$, which is insulating, to the 1 -periodic state $(\delta=0)$, which is metallic.

Third result

Finally, we study the nature of the transition. It is not difficult to see that $\delta \rightarrow 0$ as $\theta \rightarrow \theta_{c}$. There is a bifurcation around this critical temperature,

Theorem (Gontier, K, Séré 2022)

There is $C>0$, such that $\delta(\theta)=C \sqrt{\left(\theta_{c}-\theta\right)_{+}}+o\left(\sqrt{\left(\theta_{c}-\theta\right)_{+}}\right)$.

Figure: Phase profile of δ in thermodynamic limit case.

What to keep in mind?

In presence of positive temperature θ :

- Existence of a nonnegative critical temperature for all L such that, the closed even polyacetylene chain behaves like metal above and insulator below.
- For $L=0 \bmod 4$, and thermodynamic limit cases, uniqueness and positivity while for $L=2 \bmod 4$, there is a critical value of μ noted $\mu_{c}(L)$ which behaves like $\frac{2}{\pi} \ln (L)$ at $+\infty$, such for all $\mu>\mu_{c}$, there is no phase transition.
- In thermodynamic limit case, for $\mu>0$ large enough $\theta_{c} \sim C e^{-\frac{\pi}{4} \mu}$,
- Bifurcation study gives behaviour of the phase profile below θ_{c}.

Thank you...

