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Description of the model, scope and aim
What is Polyacetylene ?

Figure: Dimerized Polyacetylene.

Practical and technological applications: Rechargeable ba�eries, Biomedical,
OLED bulbs…

Figure: Light-emi�ing plastic film

Aim: understand how conductivity changes with temperature.
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The Peierls model

Consider a linear chain of L carbon atoms linked by springs of strength µ > 0
with a length at rest ` = 1.
Denote by ti the distance between the i-th and (i + 1)-th atoms, and set
t = {t1, · · · , tL} with periodicity L, which means i ∈ Z/LZ.
To any t = {t1, · · · , tL} we associate a matrix T defined by

T = T(t) :=



0 t1 0 0 · · · tL
t1 0 t2 · · · 0 0
0 t2 0 t3 · · · 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · tL−2 0 tL−1
tL 0 · · · 0 tL−1 0


(1)

The Peierls energy 1930. At the half filled band, the Peierls energy of the
system is given by

E (L)(t, γ) :=
µ

2

L∑
i=1

(ti − 1)2 + 2Tr (Tγ), γ ∈ SL(C); 0 ≤ γ ≤ 1 (2)
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Ground state of the Peierls energy E(L)(t, γ) :=
µ

2

L∑
i=1

(ti − 1)2 + 2Tr (Tγ)

inf
{
E (L), t ∈ (R+)L, γ ∈ SL(C), 0 ≤ γ ≤ 1

}
.

Lemma
For any T ∈ SL(C),

inf
γ ∈ SL(C)
0 ≤ γ ≤ 1

{2Tr (Tγ)} = −Tr
(√

T 2
)

= −Tr (|T |) .

New minimization problem

E(L) := inf
{
E (L), t ∈ (R+)L

}
with

E (L)(t) :=
µ

2

L∑
i=1

(ti − 1)2 − Tr (|T |) . (3)
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Remarks and even case (L = 2N) E(2N)(t) :=
µ

2

2N∑
i=1

(ti − 1)2 − Tr (|T|)

U†TU = −T with Uij = (−1)iδij, .

If L = 2N + 1, then 0 ∈ σ(T ).

This model is translation invariant, in the sense

E (L)(t) = E (L)(τkt), τkt := {tk+1, · · · , tk+L}, k = 1, . . . , L.
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U†TU = −T with Uij = (−1)iδij, .

If L = 2N + 1, then 0 ∈ σ(T ).

This model is translation invariant, in the sense

E (L)(t) = E (L)(τkt), τkt := {tk+1, · · · , tk+L}, k = 1, . . . , L.

Theorem (Even case: Kennedy and Lieb 1987 )

For L = 2N, and µ > 0, there are exactly two minimizing configurations for E(2N), of
the form

ti = W + (−1)iδ or ti = W − (−1)iδ, with δ ≥ 0 (2-periodic). (4)

The electrons are blocked, hence low conductivity of these configurations.
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Odd case (L = 2N + 1)

Theorem (Odd case: Garcia Arroyo and Séré 2011)
For odd L (L = 2N + 1) the minimizers of the Peierls energy look like ”kinks”. Let
t(2N + 1) = (ti)i∈Z/(2N+1)Z be a global minimizer of E(2N+1). Up to translation and
subsequence, limN→+∞ ti(2N + 1) =: t∞i exists and satisfies∣∣t∞i − (W ± (−1)iδ

)∣∣ −−−−→
i→−∞

0, and
∣∣t∞i − (W ∓ (−1)iδ

)∣∣ −−−→
i→∞

0.

Figure: L = 101, we observe a localized kink.

Kinks can move, low conductivity of these configurations too.
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The Energy with temperature
In presence of positive temperature θ, the energy is given by

F (L)
θ (t, γ) :=

µ

2

L∑
i=1

(ti − 1)2 + 2 (Tr (Tγ) + θTr [S(γ)]) ,

γ ∈ SL(C), 0 ≤ γ ≤ 1 and S(γ) = (1− γ) log(1− γ) + γ log(γ).

Study the minimizers of the energy

inf
{
F (L)
θ , t ∈ (R+)L, γ ∈ SL(C), 0 ≤ γ ≤ 1

}
.

Lemma
For any T ∈ SL(C),

inf
γ ∈ SL(C)
0 ≤ γ ≤ 1

{2(Tr (Tγ) + θS(γ))} = −Tr
(
hθ(T 2)

)
,

a�ained at γ∗ = (1 + eT/θ)−1, with hθ(x) := 2θ log
(

2 cosh
(√

x
2θ

))
concave on R+.
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Energy with temperature
New minimization problem

min
{
F (L)
θ (t), t ∈ RL

+

}
with

F (L)
θ (t) :=

µ

2

L∑
i=1

(ti − 1)2 − Tr
(
hθ(T 2)

)
. (5)

Goal: study the phase diagram in the (µ, θ) plane.
Define the energy G(L)θ by

G(L)θ (t) =
µ

2

L∑
i=1

(ti − 1)2 − Tr
(
hθ(〈T 2〉)

)
, (6)

〈T 2〉 =
1
L

L∑
k=1

ΘkT 2Θ−1
k , with Θk = Θk

1 and Θ1 :=


0 1 0 · · · 0
0 0 1 · · · 0

.

.

.

.

.

.

.

.

.
.
.
.

0 0 0 · · · 1
1 0 0 · · · 0

.
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General lower bound

Theorem (GLB)
H be a separable Hilbert space (real or complex),

I an interval of R containing 0,

ϕ : I → R a convex function,

SH, the space of linear bounded self-adjoint trace class operators A : H → H i.e.
compact and

∑
λ∈σ(A) |λ| <∞,

MI := {A ∈ SH, σ(A) ⊂ I}.
Then the function f : A ∈MI 7→ Tr (ϕ(A)) is well defined and convex.

Applying this theorem with
H = RL, I = R+, ϕ(x) = −hθ(x), SH = SL(R), A = T 2,MI = S+L (R),
we get

Tr (hθ(T 2)) ≤ Tr (hθ(〈T 2〉)) =⇒ F (L)
θ (t) ≥ G(L)θ (t) ,

with equality for 2-periodic configurations t2 = {ti}i with ti = W ± (−1)iδ
i = 1, . . . , L, where δ ≥ 0.
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First Result F(L)
θ

(t) =
µ

2

L∑
i=1

(ti − 1)2 − Tr
(
hθ (T

2)
)

F(L)
θ

(t) ≥ G(L)
θ

(t)

Theorem (Gontier, K, Séré 2022)

For any L = 2N, with N an integer and N ≥ 2, there exists a critical temperature
θ
(L)
c := θ

(L)
c (µ) ≥ 0 such that:

for θ ≥ θ(L)c , the minimizer of F (L)
θ is unique and 1-periodic;

for θ ∈ (0, θ(L)c ) (this set is empty if θ(L)c = 0), there are exactly two minimizers,
which are 2-periodic, of the form ti = W ± (−1)iδ, with δ ≥ 0.

In addition,
i) If L ≡ 0 mod 4, this critical temperature is positive (θ(L)c (µ) > 0 for all µ > 0).

ii) If L ≡ 2 mod 4, there is µc := µc(L) > 0 such that for µ ≤ µc , θ
(L)
c is positive

(θ(L)c > 0), whereas for µ > µc , θ
(L)
c = 0. Moreover as a function of L we have

µc(L) ∼ 2
π ln(L) at +∞.

By the above general lower

inf
t
G(2N)θ (t) ≥ F (2N)

θ (t2) = G(2N)θ (t2) ≥ inf
t
G(2N)θ (t)

Then as in the null temperature case, the minimizers are always 2-periodic.
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The minimization problem is reduced to a minimization over the two variables W
and δ. Actually, we have

F (2N)
θ = (2N) min

{
g(2N)θ (W , δ), W ≥ 0, δ ≥ 0

}
,

with the energy per unit atom

g(2N)θ (W , δ) =
µ

2

[
(W − 1)2 + δ2]− 1

2N

2N∑
k=1

hθ

(
4W 2 cos2

(
2kπ
2N

)
+ 4δ2 sin2

(
2kπ
2N

))
.

We recognize a Riemann sum in the last expression. We can take the
thermodynamic limit free energy (per unit atom) as L→ +∞, and we get

fθ := lim inf
N→+∞

1
2N

F (2N)
θ . (7)

Lemma

We have fθ = min {gθ(W , δ), W ≥ 0, δ ≥ 0} with

gθ(W , δ) :=
µ

2

[
(W − 1)2 + δ2]− 1

2π

∫ 2π

0
hθ
(
4W 2 cos2(s) + 4δ2 sin2(s)

)
ds.
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Second result
Theorem (Gontier, K, Séré 2022)
There is a critical (thermodynamic) temperature θc = θc(µ) > 0, which is always
positive, and so that for all θ ≥ θc, the minimizer of gθ satisfies δ = 0, whereas for all
θ < θc , it satisfies δ > 0.
In the large µ limit, we have

θc(µ) ∼ C exp
(
−π

4
µ+ o(1)

)
, with C ≈ 1.6686.

Then in an infinite chain, there is a transition between the dimerized states (δ > 0) ,
which is insulating, to the 1-periodic state (δ = 0), which is metallic.
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Third result
Finally, we study the nature of the transition. It is not di�icult to see that δ → 0 as
θ → θc . There is a bifurcation around this critical temperature,

Theorem (Gontier, K, Séré 2022)

There is C > 0, such that δ(θ) = C
√

(θc − θ)+ + o
(√

(θc − θ)+
)
.

Figure: Phase profile of δ in thermodynamic limit case.
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What to keep in mind ?

In presence of positive temperature θ:

Existence of a nonnegative critical temperature for all L such that,the closed
even polyacetylene chain behaves like metal above and insulator below.

For L = 0 mod 4, and thermodynamic limit cases, uniqueness and positivity
while for L = 2 mod 4, there is a critical value of µ noted µc(L) which behaves
like 2

π ln(L) at +∞, such for all µ > µc , there is no phase transition.

In thermodynamic limit case, for µ > 0 large enough θc ∼ Ce−
π
4 µ,

Bifurcation study gives behaviour of the phase profile below θc.

Thank you…
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