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@ Description of the model, scope and aim

© The Peierls model at zero temperature

© The Peierls model with temperature

° Statement of our results
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Description of the model, scope and aim

@ What is Polyacetylene ?

Figure: Dimerized Polyacetylene.

@ Practical and technological applications: Rechargeable batteries, Biomedical,
OLED bulbs...

Figure: Light-emitting plastic film

@ Aim: understand how conductivity changes with temperature.
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Outline

© The Peierls model at zero temperature
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The Peierls model

t Lin
P /"\, P

D>,
@ (& £ C i C C

o Consider a linear chain of L carbon atoms linked by springs of strength u > 0
with a length at rest £ = 1.
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The Peierls model
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o Consider a linear chain of L carbon atoms linked by springs of strength u > 0

with a length at rest £ = 1.
@ Denote by t; the distance between the i-th and (i 4+ 1)-th atoms, and set

t={t, -t} with periodicity L, which means i € Z/LZ.
o Toanyt={#, - ,t;} we associate a matrix T defined by
(O 0 0 ty
Hoo0 t 0 0
0 b 0 t3 0
TETO= . : : ™
0 IL,IZ 0 4
4 0 4 0
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The Peierls model

e
v Vri
@ Consider a linear chain of L carbon atoms linked by springs of strength 1z > 0

with a length at rest £ = 1.
@ Denote by t; the distance between the i-th and (i 4+ 1)-th atoms, and set

t={t, -t} with periodicity L, which means i € Z/LZ.
o Toanyt={#, - ,t;} we associate a matrix T defined by
O 0 0 ty
Hoo0 t 0 0
0 0 t3 0
T=T():= (1)

@ The Peierls energy 1930. At the half filled band, the Peierls energy of the
system is given by

L
£W(t,7) —%Z(t—1 F2Te(Ty), ve€S(Cho<~y<1 (2

D



Ground state of the Peierls energy

L
W, vy = LS00 — 02 4 2m (1)
2=

Lemma

inf{eW,te (Ry),, veSC)Lo<y <1},

Forany T € §;(C),

{2Tr (77)}

n
S.(C
5

Tr (VT?) = -

Tr (|7]).
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Ground state of the Peierls energy |-

Z(: — )% 4 2Tr (T)

i=1

inf{eW,te (Ry),, veSC)Lo<y <1},

Lemma
Forany T € §,(C),

(2T (M)} = =Tr (VT?) = =Te (I7)).

New minimization problem

EW) = inf {g“), te (R+)L}
with

L
£W(t) —%Zt—1 ~Te(|T) |

Phase Transition
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Remarks and even case (L = 2N)

o UTTU=-T with U;= (1),
o If L=2N+1,then0 € o(T).

@ This model is translation invariant, in the sense

2N
Ny — ’7 S =1 =T (7))
i=1

E(L)(t) = E(L)(Tkt),Tkt = {tk—H, s atk+L}7 k=1,... L

Phase Transition
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Remarks and even case (L = 2N) TS SN

i=1

("] Z/{T TU=-T with Z/{,J = (—1)i6,'j',
o If L=2N+1,then 0 € o(T).

@ This model is translation invariant, in the sense

g(L)(t) = E(L)(Tkt)aTkt = {tk—‘rh T tk-l—L}a k= 1) sy L.

Theorem (Even case: Kennedy and Lieb 1987 )

For L = 2N, and i > 0, there are exactly two minimizing configurations for E®N), of
the form

ti=W4+ (=1)6orti=W —(=1)'6, withd > 0 (2-periodic). (4)

@ The electrons are blocked, hence low conductivity of these configurations.
8/19



Odd case (L = 2N + 1)

Theorem (Odd case: Garcia Arroyo and Séré 2011)

Forodd L (L = 2N + 1) the minimizers of the Peierls energy look like "kinks”. Let
t(2N + 1) = (t;)icz/(2n+1)z be a global minimizer of E?N*1. Up to translation and
subsequence, limy_,+ oo t;(2N + 1) =: £ exists and satisfies

|67 = (W (=1)'8)| —— 0, and [ — (W F (~1)/8)| — 0.

i—00

Figure: L = 101, we observe a localized kink.

o Kinks can move, low conductivity of these configurations too.
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© The Peierls model with temperature
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The Energy with temperature

In presence of positive temperature 0, the energy is given by

FO (¢ _%‘Zt_1 +2(Tr (T9) + 0Te [S()]) »

7 € 81(C),0 <y < Tand S(y) = (1 —7)log(1 —7) + vlog(7).

Study the minimizers of the energy

inf {fg‘%t €(R,):, veS(C)0<y< 1} .
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The Energy with temperature

In presence of positive temperature 0, the energy is given by
L
F (e —%‘Zt—1 +2(Tr (Ty) + 6T [S(Y)])

7 € 81(C),0 <y < Tand S(y) = (1 —7)log(1 —7) + vlog(7).

Study the minimizers of the energy

inf {fg‘%t € Ry, 7 €S8(C),0< < 1} .
Lemma
Forany T € §,(C),

o ((Tr (T7) +65(7))} = —Tr (ho(T%))

n
v € §i(C
0< vy <1

attained at v, = (1+ e7/%)~", with hy(x) := 20 log (2 cosh (%)) concave on R ;..

v
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Energy with temperature

New minimization problem

min { 7§2(0), te R }

with

FO(t) = %Z (t — 1) = Tr (ho(T2)) | )

Goal: study the phase diagram in the (1, 0) plane.
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Energy with temperature

New minimization problem

min { 7§2(0), te R }

with

L
FO) = %Z (t — 1) = Tr (ho(T?)) | (5)

Goal: study the phase diagram in the (1, 0) plane.
Define the energy gé‘) by

L
G57(6) = £ 3 (6= 17 = Tr (ho((T%)). ©)
i=1
L o o 0
(T = 2670, ", with @, =@k and @, = [
k=1 o 0 0 .- 1
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General lower bound

Theorem (GLB)

o H be a separable Hilbert space (real or complex),
@ | an interval of R containing 0,
o v : | — R a convex function,

o Sy, the space of linear bounded self-adjoint trace class operators A : H — H. i.e.
compact and } ¢, (4 |Al < o0,

o M;:={Ae Sy, od(A)CI}.
Then the function f : A € M, — Tr (¢(A)) is well defined and convex.
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General lower bound

Theorem (GLB)

o H be a separable Hilbert space (real or complex),
@ | an interval of R containing 0,
o v : | — R a convex function,

o Sy, the space of linear bounded self-adjoint trace class operators A : H — H i.e.
compact and } ¢, (4 |Al < o0,

o M;:={Ae Sy, od(A)CI}.
Then the function f : A € M, — Tr (¢(A)) is well defined and convex.

Applying this theorem with
H = RL, I = R+7 QD(X) = —hg(X), SH = SL(R)v A= Tzs M/ = ST(R),
we get

Tr (ho(T?)) < Tr (ho((T2))) = | V(1) = 657 (1) |,

with equality for 2-periodic configurations t, = {t;}; with t; = W + (—1)/§
i=1,...,L whered > 0.
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e Statement of our results
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First Result A0 = S (o) | [P0 > 0P

2 =

Theorem (Gontier, K, Séré 2022)

For any L = 2N, with N an integer and N > 2, there exists a critical temperature
95“ = HEL)(/J) > 0 such that:
e forf > HEL), the minimizer of}"éL) is unique and 1-periodic;
e forf € (0, GEL)) (this set is empty ifGEL) = 0), there are exactly two minimizers,
which are 2-periodic, of the form t; = W + (—1)/6, with § > 0.
In addition,
Q@ IfL=0 mod 4, this critical temperature is positive (QEL)(M) > 0 forall > 0).
@ IfL=2 mod 4, there is jic := pc(L) > 0 such that for i < p, o) is positive
(GEL) > 0), whereas for > i, GEL) = 0. Moreover as a function of L we have
fe(L) ~ 2 In(L) at +oc.

D



First Result H0-L 50— o) | [0 > o

i=1

Theorem (Gontier, K, Séré 2022)
For any L = 2N, with N an integer and N > 2, there exists a critical temperature
o) = HEL)(/J) > 0 such that:
e forf > HEL), the minimizer of}"éL) is unique and 1-periodic;

e forf € (0, GEL)) (this set is empty ifGEL) = 0), there are exactly two minimizers,
which are 2-periodic, of the form t; = W + (—1)/6, with § > 0.
In addition,

Q@ IfL=0 mod 4, this critical temperature is positive (QEL)(M) > 0 forall > 0).

@ IfL=2 mod 4, there is jic := pc(L) > 0 such that for i < p, o) is positive

(GEL) > 0), whereas for > i, GEL) = 0. Moreover as a function of L we have
fe(L) ~ 2 In(L) at +oc.

By the above general lower
inf G (1) > FiV () = 05V () > inf G5 (1)

Then as in the null temperature case, the minimizers are always 2-periodic.
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The minimization problem is reduced to a minimization over the two variables W
and J. Actually, we have

A = (V) min {g™(W.5), W >0, 6>0},

with the energy per unit atom

(2N) 1 1 X 2km 2k \
2N _ 2 2 2502
g (W,9) = 5 [(W—=1)*+¢] kg : hg (4W cos’ (ZN) + 447 sin <2N>

/
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The minimization problem is reduced to a minimization over the two variables W
and J. Actually, we have

A = (V) min {g™(W.5), W >0, 6>0},

with the energy per unit atom

(2N) I N 2km 2k
2N _ P 2 2 202
g (W,a)fz[(w 1) + &7 § h9<4W cos’ (ZN)+45 sin <2N>

We recognize a Riemann sum in the last expression. We can take the
thermodynamic limit free energy (per unit atom) as L — +o00, and we get

\

/

fp := liminf NF(ZN). )

N—+o00 2
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The minimization problem is reduced to a minimization over the two variables W
and J. Actually, we have

P = Ny min {7 (W,8), W >0, 520},
with the energy per unit atom

(2N) 1 N 2km 2k \
2N _ P 2 2 202
g (W,5)72[(W 1) + &7 § h9<4W cos’ (2N)+45 sin (2N>

/

We recognize a Riemann sum in the last expression. We can take the
thermodynamic limit free energy (per unit atom) as L — +o00, and we get

fp := liminf —F(ZN) . )

N—s+oo 2N ¢

Lemma

We have fy = min {gg(W,d), W >0, 6 > 0} with

2
go(W,6) = % [(W—=1)"+6] - %/ hg (4W? cos®(s) + 46 sin’(s)) ds.
0
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Second result
Theorem (Gontier, K, Séré 2022)

There is a critical (thermodynamic) temperature . = 0.(u) > 0, which is always
positive, and so that for all @ > 0., the minimizer of gy satisfies d = 0, whereas for all
0 < 0., it satisfies § > 0.

In the large p limit, we have

0c(p) ~ Cexp <f%u+ 0(1)), with C = 1.6686.

V.

Then in an infinite chain, there is a transition between the dimerized states (6 > 0),
which is insulating, to the 1-periodic state (§ = 0), which is metallic.

» 0.030 — &
-
0.025 Ce

Metallic

= 0.005

Critical temperature
2
2
w

Insulato:
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u
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Third result

Finally, we study the nature of the transition. It is not difficult to see that § — 0 as
0 — 0.. There is a bifurcation around this critical temperature,

Theorem (Gontier, K, Séré 2022)
There is C > 0, such that 6(0) = C+/(0. — 0)+ + o (\/(96 - 9)+> .

0.20
0.15 - P
0.10
0.05

w  0.00

-0.05
-0.10
-0.15

7020 T T T T
0.0 0.1 0.2 03 0.4 0.5
©

Figure: Phase profile of § in thermodynamic limit case.
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What to keep in mind ?

In presence of positive temperature 0:

o Existence of a nonnegative critical temperature for all L such that,the closed
even polyacetylene chain behaves like metal above and insulator below.

@ For L =0 mod 4, and thermodynamic limit cases, uniqueness and positivity
while for L =2 mod 4, there is a critical value of u noted 1i.(L) which behaves
like % In(L) at 400, such for all & > p., there is no phase transition.

e In thermodynamic limit case, for ;2 > 0 large enough 6. ~ Ce™ i ¥,

o Bifurcation study gives behaviour of the phase profile below ..

Thank you...
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