Déconvolution dans un modèle de régression en base d'Hermite

Ousmane Sacko

ousmane.sacko@math.univ-toulouse.fr

https://sites.google.com/view/ousmanesacko/home

Institut de Mathématiques de Toulouse 5219, Université Paul Sabatier

RJCAF

5 et 6 décembre 2022

- 1 Introduction
- 2 Estimation procedure
- 8 Rate of convergence
- Illustration
- 6 Perspectives

Regression model

$$y(x_k) = h(x_k) + \varepsilon_k, \quad k = -n, \dots, n-1,$$
 (1.1)

where

$$h(x) = \mathbf{f} \star g(x) = \int_{\mathbb{R}} \mathbf{f}(x - y)g(y)dy, \qquad (1.2)$$

- fonction g : kernel is supposed known,
- $(x_k = kT/n)_{-n \le k \le n-1}$ where $0 < T < \infty$, fixed,
- $(\varepsilon_k)_{-n \le k \le n-1}$ (noise) i.i.d. with $\mathbb{E}[\varepsilon_k] = 0$ and $\operatorname{Var}(\varepsilon_k) = \sigma_{\varepsilon}^2 < \infty$, known,
- *f* is the unknown function to be estimated.

Special cases!

Regression model

$$y(x_k) = h(x_k) + \varepsilon_k, \quad k = -n, \dots, n-1,$$
 (1.1)

where

$$h(x) = \mathbf{f} \star g(x) = \int_{\mathbb{R}} \mathbf{f}(x - y)g(y)dy, \qquad (1.2)$$

- fonction g : kernel is supposed known,
- $(x_k = kT/n)_{-n \le k \le n-1}$ where $0 < T < \infty$, fixed,
- $(\varepsilon_k)_{-n \le k \le n-1}$ (noise) i.i.d. with $\mathbb{E}[\varepsilon_k] = 0$ and $\operatorname{Var}(\varepsilon_k) = \sigma_{\varepsilon}^2 < \infty$, known,
- *f* is the unknown function to be estimated.

Special cases!

Some references

If supp(f) \cap supp(g) \subset (0, + ∞ (:

- Del *et al* (1998) study the problem for g(x) = be^{-ax}1_{x≥0} and using linear differential equation.
- Abramovich *et al* (2013) summarize the problem to estimating h^(d) by a kernel method.
- Comte et al (2017) propose a projection method in the Laguerre basis.

Goal : extend theses results to the case $f \neq 0$ and $g \neq 0$ on $(-\infty, 0)$.

Two estimations methods are considered :

- deconvolution-projection procedure,
- projection-projection procedure.

Some references

If supp(f) \cap supp(g) \subset (0, + ∞ (:

- Del *et al* (1998) study the problem for $g(x) = be^{-ax} 1_{x \ge 0}$ and using linear differential equation.
- Abramovich *et al* (2013) summarize the problem to estimating h^(d) by a kernel method.
- Comte et al (2017) propose a projection method in the Laguerre basis.

Goal : extend theses results to the case $f \neq 0$ and $g \neq 0$ on $(-\infty, 0)$.

Two estimations methods are considered :

- deconvolution-projection procedure,
- projection-projection procedure.

Some references

If supp(f) \cap supp(g) \subset (0, + ∞ (:

- Del *et al* (1998) study the problem for $g(x) = be^{-ax} 1_{x \ge 0}$ and using linear differential equation.
- Abramovich *et al* (2013) summarize the problem to estimating h^(d) by a kernel method.
- Comte et al (2017) propose a projection method in the Laguerre basis.

Goal : extend theses results to the case $f \neq 0$ and $g \neq 0$ on $(-\infty, 0)$.

Two estimations methods are considered :

- deconvolution-projection procedure,
- projection-projection procedure.

Hermite basis

Define the Hermite basis $(\varphi_j)_{j\geq 0}$ from Hermite polynomials $(H_j)_{j\geq 0}$:

$$\varphi_j(x) = c_j H_j(x) e^{-x^2/2}, \quad H_j(x) = (-1)^j e^{x^2} \frac{d^j}{dx^j} (e^{-x^2}), \quad c_j = (2^j j! \sqrt{\pi})^{-1/2}, \quad j \ge 0.$$

The Hermite polynomials $(H_j)_{j\geq 0}$:

$$\int_{\mathbb{R}} H_j(x) H_k(x) e^{-x^2} dx = 2^j j! \sqrt{\pi} \delta_{j,k}.$$

Note that :

 $\varphi_j^* = \sqrt{2\pi}(i)^j \varphi_j$

$$|arphi_j(x)| \leq C e^{-\zeta x^2}, \quad |x| \geq \sqrt{2j+1} \quad C, \zeta > 0.$$

Hermite basis

Define the Hermite basis $(\varphi_j)_{j\geq 0}$ from Hermite polynomials $(H_j)_{j\geq 0}$:

$$\varphi_j(x) = c_j H_j(x) e^{-x^2/2}, \quad H_j(x) = (-1)^j e^{x^2} \frac{d^j}{dx^j} (e^{-x^2}), \quad c_j = (2^j j! \sqrt{\pi})^{-1/2}, \quad j \ge 0.$$

The Hermite polynomials $(H_j)_{j\geq 0}$:

$$\int_{\mathbb{R}} H_j(x) H_k(x) e^{-x^2} dx = 2^j j! \sqrt{\pi} \delta_{j,k}.$$

Note that :

$$\varphi_j^* = \sqrt{2\pi}(i)^j \varphi_j$$

$$|arphi_j(x)| \leq C e^{-\zeta x^2}, \quad |x| \geq \sqrt{2j+1} \quad C, \zeta > 0.$$

Hermite basis

Define the Hermite basis $(\varphi_j)_{j\geq 0}$ from Hermite polynomials $(H_j)_{j\geq 0}$:

$$\varphi_j(x) = c_j H_j(x) e^{-x^2/2}, \quad H_j(x) = (-1)^j e^{x^2} \frac{d^j}{dx^j} (e^{-x^2}), \quad c_j = (2^j j! \sqrt{\pi})^{-1/2}, \quad j \ge 0.$$

The Hermite polynomials $(H_j)_{j\geq 0}$:

$$\int_{\mathbb{R}} H_j(x) H_k(x) e^{-x^2} dx = 2^j j! \sqrt{\pi} \delta_{j,k}.$$

Note that :

$$\varphi_j^* = \sqrt{2\pi}(i)^j \varphi_j$$

$$|arphi_j(x)| \leq C e^{-\zeta x^2}, \quad |x| \geq \sqrt{2j+1} \quad C, \zeta > 0.$$

Hermite basis

Define the Hermite basis $(\varphi_j)_{j\geq 0}$ from Hermite polynomials $(H_j)_{j\geq 0}$:

$$\varphi_j(x) = c_j H_j(x) e^{-x^2/2}, \quad H_j(x) = (-1)^j e^{x^2} \frac{d^j}{dx^j} (e^{-x^2}), \quad c_j = (2^j j! \sqrt{\pi})^{-1/2}, \quad j \ge 0.$$

The Hermite polynomials $(H_j)_{j\geq 0}$:

$$\int_{\mathbb{R}} H_j(x) H_k(x) e^{-x^2} dx = 2^j j! \sqrt{\pi} \delta_{j,k}.$$

Note that :

$$\varphi_j^* = \sqrt{2\pi}(i)^j \varphi_j$$

$$|arphi_j(x)| \leq C e^{-\zeta x^2}, \quad |x| \geq \sqrt{2j+1} \quad C, \zeta > 0.$$

Fourier-Hermite approach

Assumptions

- (A1) *f* and *f*^{*} belong to $\mathbb{L}^1(\mathbb{R})$ where $t^*(u) = \int e^{iux} t(x) dx$ denotes the Fourier transform of *t*.
- (A2) $g^* \neq 0$.
- (A3) There exists $c_1 \ge c_1' > 0$, $\gamma > 0$, such that

$$c_1'(1+t^2)^{\gamma} \leq |g^*(t)|^{-2} \leq c_1(1+t^2)^{\gamma}, \quad \forall t \in \mathbb{R}.$$

We have :

$$f(x) = rac{1}{2\pi} \int_{\mathbb{R}} e^{-iux} rac{h^*(u)}{g^*(u)} du, \quad \forall x \in \mathbb{R}.$$

Then, we obtain **an estimator of** *f* by replacing *h* **by an estimator**.

Fourier-Hermite approach

Assumptions

- (A1) *f* and *f*^{*} belong to $\mathbb{L}^1(\mathbb{R})$ where $t^*(u) = \int e^{iux} t(x) dx$ denotes the Fourier transform of *t*.
- (A2) $g^* \neq 0$.
- (A3) There exists $c_1 \ge c_1' > 0$, $\gamma > 0$, such that

$$c_1'(1+t^2)^{\gamma} \leq |g^*(t)|^{-2} \leq c_1(1+t^2)^{\gamma}, \quad \forall t \in \mathbb{R}.$$

We have :

$$f(x) = rac{1}{2\pi} \int_{\mathbb{R}} e^{-iux} rac{h^*(u)}{g^*(u)} du, \quad \forall x \in \mathbb{R}.$$

Then, we obtain **an estimator of** *f* by replacing *h* **by an estimator**.

Fourier-Hermite approach

Assumptions

- (A1) *f* and *f*^{*} belong to $\mathbb{L}^1(\mathbb{R})$ where $t^*(u) = \int e^{iux} t(x) dx$ denotes the Fourier transform of *t*.
- (A2) $g^* \neq 0$.
- (A3) There exists $c_1 \ge c_1' > 0$, $\gamma > 0$, such that

$$c_1'(1+t^2)^{\gamma} \leq |g^*(t)|^{-2} \leq c_1(1+t^2)^{\gamma}, \quad \forall t \in \mathbb{R}.$$

We have :

$$f(x) = rac{1}{2\pi} \int_{\mathbb{R}} e^{-iux} rac{h^*(u)}{g^*(u)} du, \quad \forall x \in \mathbb{R}.$$

Then, we obtain an estimator of *f* by replacing *h* by an estimator.

Estimator of f

Set :

$$\Phi_d = (\varphi_j(x_k))_{-n \leq k \leq n-1, 0 \leq j \leq d-1}, \quad \Psi_d = \frac{T}{n} \Phi_d^t \Phi_d.$$

The projection estimator of h :

$$\widehat{h}_d = \sum_{j=0}^{d-1} \widehat{a}_j^{(d)} \varphi_j,$$

$$\vec{\hat{a}}^{(d)} := \begin{pmatrix} \hat{a}_0^{(d)} \\ \vdots \\ \hat{a}_{d-1}^{(d)} \end{pmatrix} = (\Phi_d^t \Phi_d)^{-1} \Phi_d^t \vec{\mathscr{Y}} = \frac{T}{n} \Psi_d^{-1} \Phi_d^t \vec{\mathscr{Y}}, \qquad \vec{\mathscr{Y}} = \begin{pmatrix} (y(x_{-n}) \\ \vdots \\ y(x_{n-1}) \end{pmatrix}.$$

Estimator of f

$$\widehat{f}_{(\ell),d}(x) = rac{1}{2\pi}\int_{-\ell}^{\ell}e^{-iux}rac{\widehat{h}_d^*(u)}{g^*(u)}du, \quad \ell>0.$$

Estimator of f

Set :

$$\Phi_d = (\varphi_j(x_k))_{-n \leq k \leq n-1, 0 \leq j \leq d-1}, \quad \Psi_d = \frac{T}{n} \Phi_d^t \Phi_d.$$

The projection estimator of h :

$$\widehat{h}_d = \sum_{j=0}^{d-1} \widehat{a}_j^{(d)} \varphi_j,$$

$$\vec{\hat{a}}^{(d)} := \begin{pmatrix} \hat{a}_0^{(d)} \\ \vdots \\ \hat{a}_{d-1}^{(d)} \end{pmatrix} = \left(\Phi_d^t \Phi_d \right)^{-1} \Phi_d^t \vec{\mathscr{Y}} = \frac{T}{n} \Psi_d^{-1} \Phi_d^t \vec{\mathscr{Y}}, \qquad \vec{\mathscr{Y}} = \begin{pmatrix} (y(x_{-n}) \\ \vdots \\ y(x_{n-1}) \end{pmatrix}.$$

Estimator of f

$$\widehat{f}_{(\ell),d}(x)=rac{1}{2\pi}\int_{-\ell}^{\ell}e^{-iux}rac{\widehat{h}_{d}^{*}(u)}{g^{*}(u)}du,\quad \ell>0.$$

Estimator of f

Set :

$$\Phi_d = (\varphi_j(x_k))_{-n \leq k \leq n-1, 0 \leq j \leq d-1}, \quad \Psi_d = \frac{T}{n} \Phi_d^t \Phi_d.$$

The projection estimator of h :

$$\widehat{h}_d = \sum_{j=0}^{d-1} \widehat{a}_j^{(d)} \varphi_j,$$

$$\vec{\hat{a}}^{(d)} := \begin{pmatrix} \hat{a}_0^{(d)} \\ \vdots \\ \hat{a}_{d-1}^{(d)} \end{pmatrix} = \left(\Phi_d^t \Phi_d\right)^{-1} \Phi_d^t \vec{\mathscr{Y}} = \frac{T}{n} \Psi_d^{-1} \Phi_d^t \vec{\mathscr{Y}}, \qquad \vec{\mathscr{Y}} = \begin{pmatrix} (y(x_{-n}) \\ \vdots \\ y(x_{n-1}) \end{pmatrix}.$$

Estimator of f

$$\widehat{f}_{(\ell),d}(x)=rac{1}{2\pi}\int_{-\ell}^{\ell}e^{-iux}rac{\widehat{h}_{d}^{*}(u)}{g^{*}(u)}du,\quad \ell>0.$$

Performance of $\hat{f}_{(\ell),d}$

Risk bound of $\widehat{f}_{(\ell),d}$

Set

$$\Delta(\ell) = \sup_{|u| \le \ell} |g^*(u)|^{-2}, \qquad f_{(\ell)}(x) = \frac{1}{2\pi} \int_{-\ell}^{\ell} e^{-iux} f^*(u) du$$

Proposition

Under (A1) and (A2), we have

$$\mathbb{E}\left[\|\widehat{f}_{(\ell),d} - f\|^2\right] \leq \|f - f_{(\ell)}\|^2 + \Delta(\ell) \left(\|h - h_d\|^2 + \lambda_{max} \left(\Psi_d^{-1}\right)\|h - h_d\|_n^2 + \sigma_{\varepsilon}^2 \frac{T}{n} \operatorname{tr}\left(\Psi_d^{-1}\right)\right).$$

- The first term $(\|f f_{(\ell)}\|^2 = \frac{1}{2\pi} \int_{|u|>\ell} |f^*(u)|^2 du)$ is the classical bias term.
- The term $\Delta(\ell)$ corresponds to the deconvolution aspect of problem.
- The terms in the big parenthesis represent the regression aspect of problem.

Rate of convergence?

Risk bound of $\widehat{f}_{(\ell),d}$

Set

$$\Delta(\ell) = \sup_{|u| \le \ell} |g^*(u)|^{-2}, \qquad f_{(\ell)}(x) = \frac{1}{2\pi} \int_{-\ell}^{\ell} e^{-iux} f^*(u) du$$

n

Proposition

Under (A1) and (A2), we have

$$\mathbb{E}\left[\|\widehat{f}_{(\ell),d} - f\|^2\right] \le \|f - f_{(\ell)}\|^2 + \Delta(\ell) \left(\|h - h_d\|^2 + \lambda_{max} \left(\Psi_d^{-1}\right)\|h - h_d\|_n^2 + \sigma_{\varepsilon}^2 \frac{T}{n} \operatorname{tr}\left(\Psi_d^{-1}\right)\right).$$

- The first term $(\|f f_{(\ell)}\|^2 = \frac{1}{2\pi} \int_{|u|>\ell} |f^*(u)|^2 du)$ is the classical bias term.
- The term $\Delta(\ell)$ corresponds to the deconvolution aspect of problem.
- The terms in the big parenthesis represent the regression aspect of problem.

Rate of convergence?

Risk bound of $\widehat{f}_{(\ell),d}$

Set

$$\Delta(\ell) = \sup_{|u| \le \ell} |g^*(u)|^{-2}, \qquad f_{(\ell)}(x) = \frac{1}{2\pi} \int_{-\ell}^{\ell} e^{-iux} f^*(u) du$$

- 0

Proposition

Under (A1) and (A2), we have

$$\mathbb{E}\left[\|\widehat{f}_{(\ell),d} - f\|^2\right] \le \|f - f_{(\ell)}\|^2 + \Delta(\ell) \left(\|h - h_d\|^2 + \lambda_{max} \left(\Psi_d^{-1}\right) \|h - h_d\|_n^2 + \sigma_{\varepsilon}^2 \frac{T}{n} \operatorname{tr}\left(\Psi_d^{-1}\right)\right).$$

- The first term $(\|f f_{(\ell)}\|^2 = \frac{1}{2\pi} \int_{|u|>\ell} |f^*(u)|^2 du)$ is the classical bias term.
- The term $\Delta(\ell)$ corresponds to the deconvolution aspect of problem.
- The terms in the big parenthesis represent the regression aspect of problem.

Rate of convergence?

Regularity spaces

Definition (Sobolev-Hermite ball)

Let s > 0 and L > 0, define the Sobolev-Hermite ball of regularity s by :

$$W^s_H(L) = \{ \theta \in \mathbb{L}^2(\mathbb{R}), \quad \sum_{k \ge 0} k^s a_k^2(\theta) \le L \}, \quad a_k(\theta) = \int_{\mathbb{R}} \theta(x) \varphi_k(x) dx.$$

Definition (Sobolev ball)

Recall also that the usual Sobolev ball $W^{s}(L)$ is defined, for s > 0 by

$$W^{s}(L) = \{ \theta \in \mathbb{L}^{2}(\mathbb{R}), \int (1+u^{2})^{s} |\theta^{*}(u)|^{2} du < L \}.$$

Note that (see Bongioanni and Torrea (2006))

- $W^s_H(L) \subset W^s(L^*)$
- $W_H^s(L)$ and $W^s(L^*)$ coincide for compactly supported functions.

Regularity spaces

Definition (Sobolev-Hermite ball)

Let s > 0 and L > 0, define the Sobolev-Hermite ball of regularity s by :

$$W^s_H(L) = \{ \theta \in \mathbb{L}^2(\mathbb{R}), \quad \sum_{k \ge 0} k^s a_k^2(\theta) \le L \}, \quad a_k(\theta) = \int_{\mathbb{R}} \theta(x) \varphi_k(x) dx.$$

Definition (Sobolev ball)

Recall also that the usual Sobolev ball $W^{s}(L)$ is defined, for s > 0 by

$$W^{s}(L) = \{\theta \in \mathbb{L}^{2}(\mathbb{R}), \int (1+u^{2})^{s} |\theta^{*}(u)|^{2} du < L\}.$$

Note that (see Bongioanni and Torrea (2006))

- $W^s_H(L) \subset W^s(L^*)$
- $W_H^s(L)$ and $W^s(L^*)$ coincide for compactly supported functions.

Additional Assumption :

(A4) There exists $\lambda > 0$ such that : $\lambda_{max}(\Psi_d^{-1}) \le \lambda < \infty$ uniformly in *d*.

Theorem (Rate on Sobolev ball)

Let assumptions (A1) to (A4) hold and $h \in W_H^{s+\gamma}(L)$. For $d_{opt} = [n^{1/(s+\gamma+1)}]$ with $s+\gamma > 11/6$ and $\ell_{opt} \propto n^{1/2(s+\gamma+1)}$, we derive that

$$\sup_{f \in W^s(L)} \mathbb{E}[\|\widehat{f}_{(\ell_{opt}), d_{opt}} - f\|^2] = \mathscr{O}\left(n^{-\frac{s}{s+\gamma+1}}\right).$$

• $f_{(\ell_{opt}),d_{opt}}$ converges at a polynomial rate as in density deconvolution for ordinary smooth noise (see Fan (1991)).

• This rate is not standard and it is specific to the Hermite basis (regression part).

Additional Assumption :

(A4) There exists $\lambda > 0$ such that : $\lambda_{max}(\Psi_d^{-1}) \le \lambda < \infty$ uniformly in *d*.

Theorem (Rate on Sobolev ball)

Let assumptions (A1) to (A4) hold and $h \in W_H^{s+\gamma}(L)$. For $d_{opt} = [n^{1/(s+\gamma+1)}]$ with $s + \gamma > 11/6$ and $\ell_{opt} \propto n^{1/2(s+\gamma+1)}$, we derive that

$$\sup_{f \in W^{s}(L)} \mathbb{E}[\|\widehat{f}_{(\ell_{opt}), d_{opt}} - f\|^{2}] = \mathscr{O}\left(n^{-\frac{s}{s+\gamma+1}}\right).$$

• $f_{(\ell_{opt}),d_{opt}}$ converges at a polynomial rate as in density deconvolution for ordinary smooth noise (see Fan (1991)).

• This rate is not standard and it is specific to the Hermite basis (regression part).

Additional Assumption :

(A4) There exists $\lambda > 0$ such that : $\lambda_{max}(\Psi_d^{-1}) \le \lambda < \infty$ uniformly in *d*.

Theorem (Rate on Sobolev ball)

Let assumptions (A1) to (A4) hold and $h \in W_H^{s+\gamma}(L)$. For $d_{opt} = [n^{1/(s+\gamma+1)}]$ with $s + \gamma > 11/6$ and $\ell_{opt} \propto n^{1/2(s+\gamma+1)}$, we derive that

$$\sup_{f \in W^{s}(L)} \mathbb{E}[\|\widehat{f}_{(\ell_{opt}), d_{opt}} - f\|^{2}] = \mathscr{O}\left(n^{-\frac{s}{s+\gamma+1}}\right).$$

- $\hat{f}_{(\ell_{opt}),d_{opt}}$ converges at a polynomial rate as in density deconvolution for ordinary smooth noise (see Fan (1991)).
- This rate is not standard and it is specific to the Hermite basis (regression part).

Additional Assumption :

(A4) There exists $\lambda > 0$ such that : $\lambda_{max}(\Psi_d^{-1}) \le \lambda < \infty$ uniformly in *d*.

Theorem (Rate on Sobolev ball)

Let assumptions (A1) to (A4) hold and $h \in W_H^{s+\gamma}(L)$. For $d_{opt} = [n^{1/(s+\gamma+1)}]$ with $s + \gamma > 11/6$ and $\ell_{opt} \propto n^{1/2(s+\gamma+1)}$, we derive that

$$\sup_{f \in W^{s}(L)} \mathbb{E}[\|\widehat{f}_{(\ell_{opt}), d_{opt}} - f\|^{2}] = \mathscr{O}\left(n^{-\frac{s}{s+\gamma+1}}\right).$$

- $\hat{f}_{(\ell_{opt}),d_{opt}}$ converges at a polynomial rate as in density deconvolution for ordinary smooth noise (see Fan (1991)).
- This rate is not standard and it is specific to the Hermite basis (regression part).

Adaptive for $\widehat{f}_{(\ell),d}$ with the GL method

Set $\ell = \sqrt{2d}$.

$$\widetilde{f}_{(d)}(x) := \widehat{f}_{(\sqrt{2d}),d}(x) = \frac{1}{2\pi} \int_{-\sqrt{2d}}^{\sqrt{2d}} e^{-iux} \frac{\widehat{h}_d^*(u)}{g^*(u)} du.$$

We estimate the bias by :

$$\widetilde{A}(d) := \max_{d' \in \mathscr{M}_n} \left\{ \left(\|\widetilde{f}_{d'} - \widetilde{f}_{d \wedge d'}\|^2 - \kappa_1 V(d') \right)_+ \right\}, \quad \kappa_1 > 0$$

$$V(d) = 2(1 + 24\log(n))\sigma_{\varepsilon}^{2}\Delta(\sqrt{2d})\frac{\lambda dT}{n}$$

We select \widetilde{d} :

$$\widetilde{d} := \arg\min_{d \in \mathscr{M}_n} \left\{ \widetilde{A}(d) + \kappa_2 V(d) \right\},$$

where $\kappa_1 \leq \kappa_2$ and \mathcal{M}_n a finite model collections.

κ_1 and κ_2 must be calibrated !

Oracle inequalities

Theorem

Under (A0) to (A3) and ε sub-Gaussian, for $\kappa_1 \ge 12$,

$$\mathbb{E}[\|\widetilde{f}_{(\widetilde{d})} - f\|^2] \le C \inf_{d \in \mathscr{M}_n} \left(\|f - f_{(\sqrt{2d})}\|^2 + R_b(d) + V(d) \right) + C' \frac{\log(n)}{n}$$

where

$$R_b(d) := \max_{d' \in \mathcal{M}_n, d \leq d'} \left(\Delta(\sqrt{2d'}) \|h - \mathbb{E}[\widehat{h}_{d'}]\|^2 \right).$$

If $f \in W^s_H(L)$ and $h \in W^{s+\gamma}_H(L')$ with $s + \gamma \ge 17/6$,

$$\mathbb{E}[\|\widetilde{f}_{(\widetilde{d})} - f\|^2] \leq C_1 \inf_{d \in \mathscr{M}_n} (d^{-s} + V(d)) + C_1' \frac{\log(n)}{n},$$

- The two inequalities show that $f_{(\vec{a})}$ realizes automatically a bias-variance trade-off.
- The lower bound on κ₁ is enough large.
- The variance σ_{ε}^2 must be estimated.

RJCAF

Oracle inequalities

Theorem

Under (A0) to (A3) and ε sub-Gaussian, for $\kappa_1 \ge 12$,

$$\mathbb{E}[\|\widetilde{f}_{(\widetilde{d})} - f\|^2] \leq C \inf_{d \in \mathscr{M}_n} \left(\|f - f_{(\sqrt{2d})}\|^2 + R_b(d) + V(d) \right) + C' \frac{\log(n)}{n}$$

where

$$R_b(d) := \max_{d' \in \mathcal{M}_n, d \leq d'} \left(\Delta(\sqrt{2d'}) \|h - \mathbb{E}[\widehat{h}_{d'}]\|^2 \right).$$

If $f \in W^s_H(L)$ and $h \in W^{s+\gamma}_H(L')$ with $s + \gamma \ge 17/6$,

$$\mathbb{E}[\|\widetilde{f}_{(\widetilde{d})}-f\|^2] \leq C_1 \inf_{d \in \mathscr{M}_n} (d^{-s}+V(d)) + C_1' \frac{\log(n)}{n},$$

- The two inequalities show that $\tilde{f}_{(\tilde{d})}$ realizes automatically a bias-variance trade-off.
- The lower bound on κ_1 is enough large.
- The variance σ_{ε}^2 must be estimated.

Illustration

Figures

FIGURE – 20 estimates of $\tilde{f}_{(\tilde{d})}$. The true function is in bold red and the estimates in green dotted lines for n = 1000.

Perspectives

Conclusion

- Deconvolution estimator is proposed and upper bounds are proved
- Adaptive procedure and oracle inequalities are proved
- Non asymptotic result

Perspectives

- Optimality
- Extend the result for random designs
- Consider the multivariate functions

Thank you for your attention !

Perspectives

Conclusion

- Deconvolution estimator is proposed and upper bounds are proved
- Adaptive procedure and oracle inequalities are proved
- Non asymptotic result

2 Perspectives

- Optimality
- Extend the result for random designs
- Consider the multivariate functions

Thank you for your attention !

Perspectives

Conclusion

- Deconvolution estimator is proposed and upper bounds are proved
- Adaptive procedure and oracle inequalities are proved
- Non asymptotic result

2 Perspectives

- Optimality
- Extend the result for random designs
- Consider the multivariate functions

Thank you for your attention !

F. Abramovich, M. Pensky, and Y. Rozenholc.

Laplace deconvolution with noisy observations.

Electron. J. Stat., 7 :1094–1128, 2013.

Y. Baraud.

Model selection for regression on a fixed design.

Probab. Theory Related Fields, 117(4):467-493, 2000.

F. Comte, Charles-A. Cuenod, M. Pensky, and Yves Rozenholc.

Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging.

J. R. Stat. Soc. Ser. B. Stat. Methodol., 79(1) :69–94, 2017.

Alexander Goldenshluger and Oleg Lepski.

Bandwidth selection in kernel density estimation : oracle inequalities and adaptive minimax optimality.

```
Ann. Statist., 39(3) :1608-1632, 2011.
```

Ousmane Sacko.

Hermite regression estimation in noisy convolution model.

pages 1-46, 2022.